
2025-03-31 13:55:19
精选答案
x对y的导数:例如:y=e^x通常我们求导数都是y对x的倒数,也就是y',而x对y的倒数其实就是先通过方程式将x用含y的表达式写出来,然后求导,注意变量是y。
例如:y=e^x如果求y对x的导数就是y'=e^x,也可以表示为dy/dx=e^x如果求x对y的导数就先由y=e^x得出x=lny,然后求导:x’=1/y,也可表示为dx/dy=1/y=e^(-x)可以发现:x对y求导的结果与y对x求导的结果互为倒数。扩展资料:函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。值得注意的是,导数是一个数,是指函数f(x)在点x0处导函数的函数值。但通常也可以说导函数为导数,其区别仅在于一个点还是连续的点。如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)推导而来。
2025-03-31 13:55:19
其他答案
首先对 x 求偏导然后对求完 x 偏导的 fx ,继续求对 y 的偏导。
带入 fx 的值求得二阶偏导 fxy 二阶导数,是原函数导数的导数,将原函数进行二次求导。
2025-03-31 13:55:19
其他答案
计算一个函数对另一个函数求导具体公式:
y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2