
2025-04-15 23:11:06
精选答案
(1)等比数列的通项公式是:An=A1×q^(n-1)若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2) 任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
(5) 等比求和:Sn=a1+a2+a3+.......+an①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)②当q=1时, Sn=n×a1(q=1)记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。性质①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;②在等比数列中,依次每 k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.(5) 等比数列前n项之和①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)②当q=1时, Sn=n×a1(q=1)在等比数列中,首项a1与公比q都不为零.注意:上述公式中a^n表示A的n次方。等比数列在生活中也是常常运用的。
2025-04-15 23:11:06
其他答案
等比数列的下角标公式有很多相关性质呢。比如若 m、n、p、q 为正整数,且 m+n=p+q,则有 am×an=ap×aq。这些公式和性质对于解决等比数列的相关问题非常重要,能帮助我们更好地理解和分析等比数列的特征与规律。